Publications (Reverse Chronological Order)
Please see Google Scholar
for the up-to-date list.
Robotics
Deep Bayesian Future Fusion for Self-Supervised, High-Resolution, Off-Road Mapping.
S. Aich, W. Wang, P. Maheshwari, M. Sivaprakasam, S. Triest, C. Ho, J.M. Gregory, J.G. Rogers III, and S. Scherer.
Arxiv, 2024.
Velociraptor: Leveraging Visual Foundation Models for Label-Free, Risk-Aware Off-Road Navigation.
S. Triest, M. Sivaprakasam, S. Aich, W. Wang, and S. Scherer.
In CoRL’2024: Conference on Robot Learning, 2024.
PIAug – Physics Informed Augmentation for Learning Vehicle Dynamics for Off-Road Navigation.
P. Maheshwari, W. Wang, S. Triest, M. Sivaprakasam, S. Aich, J.G. Rogers III, J.M. Gregory, and S. Scherer.
Arxiv 2023.
Domain Adaptation in LiDAR Semantic Segmentation via Hybrid Learning with Alternating Skip Connections.
E.R. Corral-Soto, M. Rochan, Y.Y. He, X. Chen, S. Aich, and B. Liu.
In IV’2023: IEEE Intelligent Vehicles Symposium, 2023.
Unsupervised Domain Adaptation in LiDAR Semantic Segmentation with Self-Supervision and Gated Adapters.
M. Rochan *, S. Aich *, E.R. Corral-Soto, A. Nabatchian, and B. Liu.
(* equal contribution)
In ICRA’2022: IEEE International Conference on Robotics and Automation, 2022.
Bidirectional Attention Network for Monocular Depth Estimation.
S. Aich *, J.M.U. Vianney *, M.A. Islam, M. Kaur, and B. Liu.
(* equal contribution)
In ICRA’2021: IEEE International Conference on Robotics and Automation, 2021.
RefinedMPL: Refined Monocular PseudoLiDAR for 3D Object Detection in Autonomous Driving.
J.M.U. Vianney *, S. Aich *, and B. Liu.
(* equal contribution)
Arxiv 2019.
Computer Vision
FAMOUS: High-Fidelity Monocular 3D Human Digitization Using View Synthesis.
[Code]
V. M. Hema, S. Aich, C. Haene, J-C. Bazin, and F. De la Torre.
In ECCV’2024: European Conference on Computer Vision, 2024.
Data-Free Class-Incremental Hand Gesture Recognition.
[Code]
S. Aich *, J. Ruiz-Santaquiteria *, Z. Lu, P. Garg,
K.J. Joseph, A.F. Garcia, V.N. Balasubramanian,
K. Kin, C. Wan, N.C. Camgoz,
S. Ma, and F. De la Torre.
(* equal contribution)
In ICCV’2023: IEEE International Conference on Computer Vision, 2023.
Using Large Text To Image Models with Structured Prompts for Skin Disease Identification: A Case Study.
S. Rajapaksa, J.M.U. Vianney, R. Castro, F. Khalvati, and S. Aich.
In ICCVW’2023: IEEE International Conference on Computer Vision Workshop, 2023.
Multi-Scale Weight Sharing Network for Image Recognition.
S. Aich, I. Stavness, Y. Taniguchi, and M. Yamazaki.
Pattern Recognition Letters, Elsevier, 2020.
Global Sum Pooling: A Generalization Trick for Object Counting with Small Datasets of Large Images.
S. Aich and I. Stavness.
In CVPRW’2019: IEEE Conference on Computer Vision and Pattern Recognition Workshop, 2019.
Semantic Binary Segmentation using Convolutional Networks without Decoders.
S. Aich, W. van der Kamp, and I. Stavness.
In CVPRW’2018: IEEE Conference on Computer Vision and Pattern Recognition Workshop, 2018.
Improving Object Counting with Heatmap Regulation.
[Code]
S. Aich and I. Stavness.
Arxiv 2018.
DeepWheat: Estimating Phenotypic Traits from Crop Images with Deep Learning.
[Code]
S. Aich, A. Josuttes, I. Ovsyannikov, K. Strueby, I. Ahmed,
H.S. Duddu, C. Pozniak, S. Shirtliffe, and I. Stavness.
In WACV’2018: IEEE Winter Conference on Applications of Computer Vision, 2018.
Leaf Counting with Deep Convolutional and Deconvolutional Networks.
[Code]
S. Aich and I. Stavness. (Oral presentation & best poster award)
In ICCVW’2017: IEEE International Conference on Computer Vision Workshop, 2017.
|